Soluble, high-affinity dimers of T-cell receptors and class II major histocompatibility complexes: biochemical probes for analysis and modulation of immune responses.
نویسندگان
چکیده
T cell receptors (TCR) and major histocompatibility complex (MHC) molecules are integral membrane proteins that have central roles in cell-mediated immune recognition. Therefore, soluble analogs of these molecules would be useful for analyzing and possibly modulating antigen-specific immune responses. However, due to the intrinsic low-affinity and inherent solubility problems, it has been difficult to produce soluble high-affinity analogs of TCR and class II MHC molecules. This report describes a general approach which solves this intrinsic low-affinity by constructing soluble divalent analogs using IgG as a molecular scaffold. The divalent nature of the complexes increases the avidity of the chimeric molecules for cognate ligands. The generality of this approach was studied by making soluble divalent analogs of two different classes of proteins, a TCR (2C TCR2Ig) and a class II MHC (MCCI-Ek2Ig) molecule. Direct flow cytometry assays demonstrate that the divalent 2C TCR2Ig chimera retained the specificity of the native 2C TCR, while displaying increased avidity for cognate peptide/MHC ligands, resulting in a high-affinity probe capable of detecting interactions that heretofore have only been detected using surface plasmon resonance. TCR2IgG was also used in immunofluorescence studies to show ER localization of intracellular peptide-MHC complexes after peptide feeding. MCCI-Ek2Ig chimeras were able to both stain and activate an MCC-specific T cell hybridoma. Construction and expression of these two diverse heterodimers demonstrate the generality of this approach. Furthermore, the increased avidity of these soluble divalent proteins makes these chimeric molecules potentially useful in clinical settings for probing and modulating in vivo cellular responses.
منابع مشابه
Analysis of the Expression of Peptide–Major Histocompatibility Complexes Using High Affinity Soluble Divalent T Cell Receptors
Understanding the regulation of cell surface expression of specific peptide-major histocompatibility complex (MHC) complexes is hindered by the lack of direct quantitative analyses of specific peptide-MHC complexes. We have developed a direct quantitative biochemical approach by engineering soluble divalent T cell receptor analogues (TCR-Ig) that have high affinity for their cognate peptide-MHC...
متن کاملCationic Immune Stimulating Complexes Containing Soluble Leishmania Antigens: Preparation, Characterization and in Vivo Immune Response Evaluation
Background: Cationic immune stimulating complexes (PLUSCOMs) are particulate antigen delivery systems. PLUSCOMs consist of cationic immunostimulatory complexes (ISCOMs) derivatives and are able to elicit in vivo T cell responses against an antigen. Objective: To evaluate the effects of PLUSCOMs containing Leishmaniamajor antigens (SLA) on the type of immune response generated in the murine mod...
متن کاملIgE-ANTIGEN COMPLEXES ENHANCE FcFR AND la EXPRESSION BY MURINE B LYMPHOCYTES
Receptors for the Fc portion of Igs were first identified on lymphocytes in 1970 (1), and later differentiated on the basis oftheir selective affinity for various Ig classes. Fc receptors for IgE (FcsR) are found on a variety of human (2, 3) and rodent (4) cells and can be categorized on the basis oftheir affinity for IgE. High-affinity FcCR (FcsR-I) found on mast cells and basophils (5) clearl...
متن کاملIn silico design a multivalent epitope vaccine against SARS-CoV-2 for Iranian populations
Background: Due to high genetic variation in human leukocyte antigen )HLA( alleles, epitope-based vaccines don’t show equal efficacy in different human populations. therefore, we proposed a multi-epitope vaccine against SARS-CoV-2 for Iranian populations. Materials and Methods: For this purpose, the proteins without allergenicity and high antigenicity as well as conservancy level from SARS-CoV...
متن کاملImmune modulation of HLA-G dimer in maternal-fetal interface
HLA-G is a non-classical human MHC class I molecule, which has several characteristics distinct from classical MHC, such as low polymorphism and restricted tissue distribution. HLA-G is expressed on placenta, thymus and some tumors. At the maternal-fetal interface, trophoblasts do not express major classical MHC class I molecules (MHCI), HLA-A and -B, to prevent normal T cell responses. Instead...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cellular immunology
دوره 192 2 شماره
صفحات -
تاریخ انتشار 1999